Generation of Singlet Oxygen from Hydrogen Peroxide Disproportionation Catalyzed by **Molybdate Ions**

K. Böhme and H.-D. Brauer*

Institut für Physikalische und Theoretische Chemie, Niederurseler Hang, D-6000 Frankfurt/Main, FRG

Received September 19, 1991

Measurements of the infrared phosphorescence of singlet molecular oxygen (1O2) at 1270 nm have been used to demonstrate that ${}^{1}O_{2}$ is formed during the disproportionation of hydrogen peroxide catalyzed by molybdate ions. The results of measurements at hydrogen peroxide concentrations in the range $0.10 \le [H_2O_2] \le 0.30$ are consistent with the assumption that MoO_{8}^{2-} and MoO_{8}^{2-} are formed. However, the decomposition of MoO_{8}^{2-} does not significantly contribute to ${}^{1}O_{2}$ formation. For the reaction $MoO_{6}^{2-} \rightarrow MoO_{4}^{2-} + {}^{1}O_{2}$, the activation parameters $E_{a} = 15.6 \pm$ 1.2 kcal·mol⁻¹ and log $A = 9.1 \pm 0.9$ have been evaluated.

Introduction

The disproportionation of hydrogen peroxide into water and singlet molecular oxygen in its ${}^{1}\Delta_{s}$ state (${}^{1}O_{2}$)

$$2H_2O_2 \rightarrow 2H_2O + {}^1O_2 \tag{1}$$

should occur spontaneously at room temperature, since this reaction is allowed on both thermodynamic and spin-conservation grounds.^{1,2} However, it is well-known that reaction 1 is kinetically inhibited; its rate is extremely low at room temperature.²

Recently, Aubry reported that several inorganic compounds can catalyze reaction 1 in basic aqueous solutions.³ In particular, the molybdate ion was found to be an efficient catalyst.⁴⁻⁶ The evidence for the generation of ${}^{1}O_{2}$ via the catalyzed reaction 1 was obtained indirectly using various water-soluble 1O2 acceptors as ¹O₂ traps, e.g. tetrapotassium rubrene-2,3,8,9-tetracarboxylate (RTC),³ which reacts with ¹O₂ providing the corresponding endoperoxide $(RTCO_2)$.

Chemical traps for ${}^{1}O_{2}$ (e.g. RTC) are unfortunately not unambigous in their effect. This was stringently demonstrated by Mulazzani et al. for the ${}^{1}O_{2}$ trap 9,10-anthracenedipropionate.⁷ Chemical traps for ¹O₂ suffer from several disadvantages which are discussed in detail in the paper of Aubry.³ In addition it must be noted that endoperoxides of aromatic hydrocarbons have the important drawback that they are thermally labile. Thus the activation parameters of a thermal reaction producing ¹O₂ cannot accurately be determined with aromatic hydrocarbons as ${}^{1}O_{2}$ traps.

In contrast, the infrared luminescence (IRL) at 1.27 μ m resulting from the weak radiative transition of ${}^{1}O_{2}$ can be used as specific and unequivocal proof for ${}^{1}O_{2}$

$$O_2({}^{1}\Delta_g) \xrightarrow{\Lambda_P} O_2({}^{3}\Sigma_g^{-}) + h\nu$$
 (2)

The present work is concerned with studies of the disproportionation of H_2O_2 catalyzed by molybdate ions using the IRL method.

Experimental Section

Materials. H₂O was distilled twice. Stabilizer-free hydrogen peroxide (30%, Merck, Perhydrol Suprapur), sodium molybdate (Na2MoO4·2H2O, Puriss pa, Fluka), disodium hydrogen phosphate (Na₂HPO₄, Suprapur,

- Aubry, J. M.; Cazin, B. Inorg. Chem. 1988, 27, 2013. Aubry, J. M.; Cazin, B.; Duprat, I. J. Org. Chem. 1989, 54, 726.
- Aubry, J. M. New chemical sources of singlet oxygen in "Membrane (6)
- Lipid Peroxidation"; CRC Press: Boca Raton, FL, 1991; Vol. 2, p 65. (7) Mulazzani, Q. G.; Ciano, M.; D'Angelantonio, M.; Venturi, M.; Rodgers, M. A. J. J. Am. Chem. Soc. 1988, 110, 2451.

Merck), trisodium phosphate (Na₃PO₄·12H₂O, pa, Merck), potassium iodide (pa Merck), 0.1 M sodium thiosulfate solution (Fixanal, Riedelde Haen), and ethylenediaminetetraacetic acid (EDTA, pa Merck) were used as purchased.

Singlet Oxygen Infrared Emission Measurements. The near-infrared detection system mostly used in our studies consisted of a chopper, 1.27- μ m interference filter, liquid nitrogen cooled germanium diode and muon filter (North Coast, EO 817 L and 829B), lock-in amplifier, and recorder. Reactions were carried out in a 1-cm quartz cuvette placed directly in front of the chopper. The cuvette holder is connected with a thermostat. Our home-built IRL spectrometer, which can be modified to record also the phosphorescence spectrum of ¹O₂, has been described in detail.^{8,9}

The intensity of the ${}^{1}O_{2}$ phosphorescence emission, I_{P} , under steadystate conditions is given by the expression

$$I_{\rm P} = ck_{\rm p}[{}^{1}\mathrm{O}_{2}]_{\rm s} \tag{I}$$

In this expression c is a constant of the IRL spectrometer and k_p is the rate constant of the phosphorescence emission. In water, a value of $k_p = 0.18 \text{ s}^{-1}$ was determined by Schmidt and Afshari.¹⁰ In addition $[^{1}O_{2}]_{s}$ denotes the stationary concentration of $^{1}O_{2}$.

If only the phosphorescence emission (reaction 2) and the quenching by the solvent (reaction 3) are responsible for the deactivation of ${}^{1}O_{2}$,

$${}^{1}O_{2} \xrightarrow{k_{\Delta}} {}^{3}O_{2}$$
 (3)

with $k_{\Delta} \gg k_{\rm P}$, then $[{}^{1}O_{2}]_{\rm s}$ is given by the following expression:

$$[{}^{1}\mathbf{O}_{2}]_{s} = v_{1\mathbf{O}_{2}}\tau_{\Delta} \tag{II}$$

where v_{1O_2} denotes the rate of 1O_2 formation and $\tau_{\Delta} = 1/k_{\Delta}$ represents the lifetime of ${}^{1}O_{2}$. From measurements of the phosphorescence emission of ${}^{1}O_{2}$ generated by electronically excited sensitizers (e.g. methylene blue), we have calculated that the lowest value of $[{}^1O_2]_s$, which can be measured with our very sensitive IRL spectrometer, amounts to about 10^{-12} M. Thus in water with the $^{1}O_{2}$ lifetime of $\tau_{\Delta} = 4.2 \ \mu s^{11}$ with our IRL spectrometer only thermal reactions can be measured, which generate ${}^{1}O_{2}$ with a rate of $v_{1O_{2}} \ge [{}^{1}O_{2}]_{s}/\tau_{\Delta} \ge 2.4 \times 10^{-7} \text{ M} \cdot \text{s}^{-1}$. However, if D₂O is used as a solvent instead of H₂O, then reactions with a lower v_{1O_2} value $(v_{10} \ge 1.5 \times 10^{-8} \text{ M} \cdot \text{s}^{-1})$ can still be measured as a consequence of the longer ¹O₂ lifetime in D₂O with τ_{Δ} = 68 µs.¹¹

For reaction 1 catalyzed by molybdate ions in basic aqueous solution at pH = 10.5 Aubry and Cazin⁴ have determined values of v_{10} , $\geq 5 \times$ 10^{-7} M·s⁻¹. Thus this reaction should be measurable without difficulties with our IRL spectrometer.

- (9) Schmidt, R. Chem. Phys. Lett. 1988, 151, 369.
- Schmidt, R.; Afshari, E. J. Phys. Chem. 1990, 94, 4377. (10)
- (11) Schmidt, R. J. Am. Chem. Soc. 1989, 111, 6983.

Koppenol, W. H. Nature (London) 1976, 262, 420.
 Evans, P. F.; Upton, M. W. J. Chem. Soc., Dalton Trans. 1985, 2525.
 Aubry, J. M. J. Am. Chem. Soc. 1985, 107, 5844.

Schmidt, R.; Brauer, H.-D. J. Am. Chem. Soc. 1987, 109, 6976. (8)

O₂ Generation from H₂O₂ Disproportionation

Introduction of eq II into eq I results in

$$I_{\rm P} = ck_{\rm P}\tau_{\Delta}v_{\rm 1O},\tag{III}$$

Equation III will be frequently stressed in the following.

Reaction Scheme and Rate Law. It is well established that the reaction between MoO_4^{2-} ions and H_2O_2 in neutral and alkaline media leads to two derivatives. ^{12} At low H_2O_2 concentration a yellow diperoxo species, MoO_6^{2-} , is formed, ¹²⁻¹⁷ whereas for a large excess of H_2O_2 a red-brown tetraperoxo molybdate, MoO₈²⁻, is generated.^{12,18,19}

In principle ${}^{1}O_{2}$ can be produced by the decomposition of both MoO_{6}^{2-} and MoO_8^{2-} . The mechanism of 1O_2 formation may therefore represented by the following steps:

$$2H_2O_2 + MoO_4^{2-} \approx 2H_2O + MoO_6^{2-}$$
 (4)

$$MoO_6^{2-} \rightarrow MoO_4^{2-} + {}^1O_2$$
 (5)

$$HMoO_6^{-} \rightleftharpoons H^+ + MoO_6^{2-} \tag{6}$$

$$H_2O_2 \rightleftharpoons H^+ + HO_2^- \tag{7}$$

$$2H_2O_2 + M_0O_6^{2-} \Rightarrow 2H_2O + M_0O_8^{2-}$$
 (8)

$$MoO_8^{2-} \rightarrow MoO_6^{2-} + {}^1O_2$$
(9)

$$HMoO_{8}^{-} \rightleftharpoons H^{+} + MoO_{8}^{2-}$$
(10)

Under the assumption that the decompositions of MoO_6^{2-} (reaction 5) and of MoO_8^{2-} (reaction 9) are slow compared with the attainment of the equilibria 4, 6–8, and 10, the rate law for ${}^{1}O_{2}$ formation is

$$v_{1O_{2}} = \{(K_{5} + \{k_{9}K_{8}[H_{2}O_{2}]_{0}^{2}\}/A)[MoO_{4}^{2-}]_{0}[H_{2}O_{2}]_{0}^{2}]/$$

$$\{(K_{4})^{-1}A + (1 + [H^{+}]/K_{6})[H_{2}O_{2}]_{0}^{2} + (\{1 + [H^{+}]/K_{10}\}K_{8}[H_{2}O_{2}]_{0}^{4})/A\} (IV)$$

Here $A = (1 + K_7/[H^+])^2$, $[MoO_4^{2-}]_0$ denotes the starting concentration, $[H_2O_2]_0$ is the total concentration of free hydrogen peroxide, k_5 and k_9 represent the rate constants of reactions 5 and 9, respectively, and K_i are the constants of the equilibria 4, 6-8, and 10, whereby the constants K_4 and K_8 contain the constant water concentration.

Aubry and Cazin⁴ have measured v_{1O_2} values of the MoO₄²⁻-catalyzed disproportionation of H_2O_2 with dependence upon pH ($8 \le pH \le 13$) and upon H₂O₂ concentration (0.005 M \leq [H₂O₂] \leq 0.11 M) using solutions containing 1 mM MoO₄²⁻. Although measurements were performed with a ratio $[H_2O_2]/[MoO_4^{2-}] = 110$ at pH = 10.5, where a part of MoO_6^{2-} should be converted into MoO_8^{2-} , ¹⁹ the authors found that their results can be described by eq V, indicating that, under the experimental

$$v_{1O_2} = \frac{1}{2} v_{H_2O_2} = \frac{k_5 [MoO_4^{2-}]_0 [H_2O_2]_0^2}{(K_4)^{-1} A + (1 + [H^+]/K_6) [H_2O_2]_0^2}$$
(V)

conditions used, MoO_8^{2-} species do not influence v_{1O_2} or the rate of disappearance of H₂O₂, $v_{H_2O_2}$, i.e. $k_5 \gg \{k_9K_8[H_2O_2]_0^2\}/A$ and $((K_4)^{-1}A)^{-1}A$ + $(1 + [H^+]/K_6)[H_2O_2]_0^2 \gg (\{1 + [H^+]/K_{10}\}K_8[H_2O_2]_0^4)/A$. The values of the rate constant and equilibrium constants in eq V are $k_5 =$ $4.6 \times 10^{-3} \text{ s}^{-1}$, $K_4 = 2.5 \times 10^3 \text{ M}^{-2}$, $K_6 = 7.9 \times 10^{-10} \text{ M}$, and $K_7 = 2.5$ × 10⁻¹² M.⁴

- (14) Jahr, K. F. Ber. Ges. Freunde T.H. Berlin 1939, 91
- (15) Csanyi, L. J. Acta Chim. Acad. Sci. Hung. 1958, 14, 69, 79, 269.
- (16) Richardson, E. Less-Common. Met. 1960, 2, 360.
- (17) Stomberg, R. Acta Chem. Scand. 1968, 22, 1076.
- Stomberg, R. Acta Chem. Scand. 1969, 23, 2755. (18)
- Csanyi, L. J.; Horvath, I.; Galbacs, Z. M. Transition Met. Chem. 1989, (19)14. 90.

Figure 1. Phosphorescence spectrum of ${}^{1}O_{2}$ (${}^{1}\Delta_{g}, v = 0 \rightarrow {}^{3}\Sigma_{g}, v = 0$). Conditions: 50 mM MoO₄²⁻; 0.9 M H₂O₂ at t = 0 s; 0.5 mM EDTA; pH = 10.5; 0.2 M phosphate buffer (Na₂HPO₄/Na₃PO₄); T = 25 °C; half-bandwidth of emission monochromator, $\lambda_{1/2} = 34$ nm.

Figure 2. I_P as a function of H_2O_2 concentration. Conditions: 1 mM MoO_4^{2-} ; 0.1 mM EDTA, pH = 10.5; 0.2 M phosphate buffer T = 25 °C. Curve a represents the theoretical curve of v_{10_2} calculated from eq V using the rate and equilibrium constants given in the text. Curve b represents the theoretical curve of v_{1O_2} calculated from eq VI using K_8 = 2.0 M⁻². The rhombs represent experimental values of I_P (au).

The value of v_{1O_2} strongly depends on pH and exhibits a maximum value at pH = 10.5. Thus in general, with the IRL technique, measurements were performed in solutions at about pH = 10.5.

Results and Discussion

To suppress the decomposition of H_2O_2 by impurities, EDTA was added to the solutions. Preliminary tests of the MoO_4^{2-} -catalyzed disproportionation of H_2O_2 with the IRL technique have unequivocally shown that ${}^{1}O_{2}$ is produced in this reaction, as demonstrated by measurements of its infrared phosphorescence spectrum (Figure 1). In order to check the results reported by Aubry and Cazin,4 the following measurements were conducted.

 ${}^{1}O_{2}$ Phosphorescence Emission as a Function of $[H_{2}O_{2}]$. According to eq III I_P is directly proportional to the rate of 1O_2 formation, v_{1O_2} . From eq V it can be deduced that at $[H_2O_2]_0$ $\leq 10^{-3} \,\mathrm{M} \,((K_4)^{-1} \gg [\mathrm{H}_2 \mathrm{O}_2]_0^2) \,v_{10}$, should increase with $[\mathrm{H}_2 \mathrm{O}_2]_0^2$ and at $[H_2O_2]_0 \ge 10^{-1} M ([H_2O_2]_0^2 \gg (K_4)^{-1}) v_{O_2}$ should be zero order with respect to H_2O_2 . However our results are not in accordance with these expectations. In Figure 2 the dependence of I_P on $[H_2O_2]_0$ up to 0.21 M of solutions 1 mM in MoO₄²⁻ at pH = 10.5 is depicted. As can be seen, the experimental I_P values obtained for $[H_2O_2]_0 \le 0.10$ M fit very well the curve of v_{10} , calculated from eq V employing the values of k_5 and the various equilibrium constants mentioned above (curve a).

However, the values of I_P obtained for solutions with $[H_2O_2]_0$ \geq 0.14 M deviate distinctly from curve a which suggests that

⁽¹²⁾ Connor, J. A.; Ebsworth, E. A. V. In Peroxy Compounds of Transition Metals. Advances in Inorganic Chemistry and Radiochemistry, Emeleus, H. J., Sharpe, A. G., Eds.; Academic Press: New York and London, 1964; Vol. 6, p 279. Griffith, W. P. J. Chem. Soc. 1963, 5345.

Figure 3. I_P as a function of time. Conditions: 9.3 mM MoO₄²⁻; 0.32 M H₂O₂ at t = 0 s; 0.1 mM EDTA; pH = 10.5; 0.2 M phosphate buffer; T = 25 °C.

besides MoO_6^{2-} also MoO_8^{2-} is formed. A reasonable explanation for the decrease of I_P observed for H_2O_2 concentrations above 0.14 M is that the decomposition of MoO_8^{2-} (reaction 9) does not lead to significant ${}^{1}O_2$ formation. With the value $K_{10} = 1 \times 10^{-8}$ M reported by Dedman et al.,²⁰ the inequality $[H^+]/K_{10} \ll 1$ holds in the range $10.2 \le pH \le 10.7$. Also with the presumption that the inequality $k_5 \gg \{k_9K_8[H_2O_2]_0^2\}/A$ holds, curve b in Figure 2 was calculated from eq VI with $K_8 = 2.0 M^{-2}$.

$$v_{1O_{2}} = \frac{k_{5}[MoO_{4}^{2-}]_{0}[H_{2}O_{2}]_{0}^{2}}{(K_{4})^{-1}A + (1 + [H^{+}]/K_{6})[H_{2}O_{2}]_{0}^{2} + K_{8}[H_{2}O_{2}]_{0}^{4}/A}$$
(VI)

Curve b fits the experimental values of I_P better than curve a. Our results are consistent with the assumption that MOO_8^{2-} species are formed at pH = 10.5 in solutions 1 mM in MOO_4^{2-} in the range $0.10 \le [H_2O_2] \le 0.21$ M but that under these conditions the decomposition of MOO_8^{2-} (reaction 9) can be neglected compared with the decomposition of MOO_6^{2-} (reaction 5). The decrease of v_{1O_2} and therefore of I_P is caused by the attainment of equilibrium 8, i.e. by the contribution of the third term in the denominator of eq VI.

From curve b can be deduced that v_{1O_2} and accordingly I_P should markedly increase with increasing time for solutions with $[H_2O_2]_0 \ge 0.20$ M. Figure 3 shows for example the variation of I_P of solutions 9.3 mM in MoO₄²⁻ at pH = 10.5 with a starting concentration of $[H_2O_2]_0 = 0.32$ M. Actually, I_P increases monotonically from about 7.95 mV at reaction zero time to a value of about $I_P = 8.75$ mV after 1500 s and then I_P remains nearly constant over a period of about 600 s in accordance with eq VI.

¹O₂ Phosphorescence Emission as a Function of [MOO₄²⁻]. Measurements of $v_{H_2O_2}$ show that $v_{H_2O_2}$ is first order with respect to MoO₄²⁻ in the range 0.2–2.0 mM.²¹ The reaction order of v_{IO_2} with respect to MoO₄²⁻ can be determined by measuring I_P as a function of [MoO₄²⁻]₀. Measurements were performed at pH = 10.5 and [H₂O₂]₀ = 0.165 M in the range 0.97–10.0 mM MoO₄²⁻. Under these conditions expression VII deduced from eqs III and VI should hold true.

$$I_{\rm P} = ck_{\rm P}\tau_{\Delta}k_{\rm 5}0.906[{\rm MoO_4}^{2-}]_0 \qquad (\rm VII)$$

Figure 4. Double logarithmic plot of I_P versus $[MoO_4^{2-}]$. Conditions: 0.1 mM EDTA; $[H_2O_2]_0 = 0.165$ M; pH = 10.5; 0.2 M phosphate buffer; T = 25 °C.

In order to determine experimentally the exponent of $[MoO_4^{2-}]_0$ a double logarithmic plot of I_P vs $[MoO_4^{2-}]_0$ was conducted (Figure 4).

The slope of the straight line in Figure 4 is 0.97 ± 0.04 , indicating that v_{1O_2} is actually first order with respect to MoO_4^{2-} in the concentration range 0.97-10.0 mM. Similar results are obtained at $10.2 \le pH \le 10.7$ and $0.10 M \le [H_2O_2]_0 \le 0.32$ M.

The data given in Figure 4 can be used for the calculation of the constant c of our IRL spectrometer.

According to eq VII a plot of I_P vs [MoO₄²⁻] yields a straight line. From the slope SL of the straight line

$$SL = ck_{P}\tau_{A}k_{5}0.906 = 0.91$$

c can be calculated using the values for $k_{\rm P}$, τ_{Δ} , and k_5 mentioned above. Taking into account all data of the measurements of $I_{\rm P}$ vs $[{\rm MoO_4}^{2-}]_0$ (vide supra) the mean value is $c = (3.0 \pm 0.2) \times 10^8 \text{ V}\cdot\text{M}^{-1}\cdot\text{s}.$

The knowledge of c enables us to determine directly the rate of ${}^{1}O_{2}$ formation (eq III) or the stationary concentration $[{}^{1}O_{2}]_{s}$ (eq I) for a given thermal ${}^{1}O_{2}$ source, if I_{P} is measured in volts. For aqueous solutions $v_{1O_{2}}$ can be calculated by expression VIII.

$$v_{1O_2} = (4.4 \pm 0.3) \times 10^{-3} I_P (M \cdot s^{-1})$$
 (VIII)

With $c = 3.0 \times 10^8$ V·M⁻¹·s the values of I_P at reaction time zero ($I_P \approx 7.95$ mV) and at t = 1500 s ($I_P \approx 8.75$ mV) given in Figure 3 can be evaluated using, for t = 0 s, $[H_2O_2]_0 = 0.32$ M and, for t = 1500 s, $[H_2O_2]_t = 0.13$, at which the maximum value of I_P is expected according to eq VI. At t = 0 s eq IX holds

$$V_{\rm P} = 0.82 c k_{\rm P} \tau_{\Lambda} k_{\rm S} 9.3 \times 10^{-3} = 7.93 \,\,{\rm mV}$$
 (IX)

and at t = 1500 s I_P is given by

$$I_{\rm p} = 0.91 c k_{\rm p} \tau_{\Delta} k_5 9.3 \times 10^{-3} = 8.80 \,\mathrm{mV}$$
 (X)

The good agreement between experimental and calculated values of I_P confirms the assumption that at H_2O_2 concentrations lower than 0.32 M the decomposition of MoO_8^{2-} (reaction 9) does not significantly contribute to 1O_2 formation.

Yield of ${}^{1}O_{2}$ formation $(y_{1O_{2}})$. In accordance with reaction 1 Aubry and Cazin⁴ have obtained for $y_{1O_{2}}$ a value of 0.5, indicating the formation of one ${}^{1}O_{2}$ molecule per two molecules of $H_{2}O_{2}$. $y_{1O_{2}}$ is given by

$$y_{1O_2} = \frac{n_{\Delta,t}/V}{[H_2O_2]_0 - [H_2O_2]_t}$$
(XI)

Here $n_{\Delta,t}$ denotes the total number of moles of ${}^{1}O_{2}$ formed at time t, V is the sample volume, and $[H_{2}O_{2}]_{0} - [H_{2}O_{2}]_{t}$ represents the concentration loss of $H_{2}O_{2}$ at time t.

⁽²⁰⁾ Dedman, A. J.; Lewis, T. J.; Richards, D. H. J. Chem. Soc. 1963, 2456.
(21) (a) Spitalsky, E.; Funck, A. Z. Phys. Chem., Stoechiom. Verwandtschaftsl. 1927, 126, 1.
(b) Baxendale, J. H. Adv. Catal. 1952, 4, 31.
(c) Sahin, M.; Berkem, A. R. Chim. Acta Turc. 1977, 5, 311.

Figure 5. I_P , concentration $n_{\Delta,t}/V$, and H_2O_2 concentration loss versus time. Conditions: 5.1 mM MoO₄²⁻; 0.1 mM EDTA; 0.165 M H₂O₂ at t = 0 s; pH = 10.5; 0.2 M phosphate buffer, T = 25 °C. $n_{\Delta,t}/V$ was calculated from eq XII using the values for c, k_P , and τ_{Δ} given in the text. The rhombs represent the values of H_2O_2 consumption determined by iodometric titration of H_2O_2 .

Figure 6. Plot of $n_{\Delta,t}/V$ versus $[H_2O_2]_0 - [H_2O_2]_t$. Conditions: see Figure 5.

In order to measure $n_{\Delta,t}/V$ the integrated intensity $(I_P)_t$ in from the reaction from zero time until time t was measured. From the integrated form of eq III for $n_{\Delta,t}/V$ eq XII follows.

$$n_{\Delta,t}/V = \frac{1}{ck_{\rm P}\tau_{\Delta}} (I_{\rm P})_t^{\rm in}$$
(XII)

Figure 5 summarizes the results of measurements of a solution 5.1 mM in MOQ_4^{2-} and an initial concentration of $[H_2O_2]_0 = 0.165$ M at pH = 10.5. Figure 5 shows the experimental curve of I_P as a function of time, the values of $n_{\Delta,t}/V$ calculated from eq XII employing the values of c, k_P , and τ_{Δ} mentioned above and finally the values of $[H_2O_2]_0 - [H_2O_2]_t$ determined by iodometric titration at six different times.

As reported by Aubry and Cazin,⁴ the rate of ${}^{1}O_{2}$ formation should be half the rate of $H_{2}O_{2}$ disappearance $(v_{1}O_{2} = 1/2v_{H_{2}O_{2}})$. If this is true the plot of $n_{\Delta,i}/V$ vs $[H_{2}O_{2}]_{0} - [H_{2}O_{2}]_{i}$ according to eq XI should yield a straight line with a slope of SL = $y_{1}O_{2} =$ 0.50.

 $n_{\Delta,t}/V$ is plotted versus $[H_2O_2]_0 - [H_2O_2]_t$ in Figure 6. The slope of the straight line is $SL = y_{1O_2} = 0.51 \pm 0.03$, confirming the result of Aubry and Cazin.

¹O₂ Phosphorescence Emission at Different Temperatures. In order to eliminate the influence of the third term on v_{1O_2} (eq VI) and accordingly on I_P , we have used for measurements of I_P as a function of temperature solutions 9.5 mM in MoO₄²⁻ and 0.093 M in H₂O₂ at pH = 10.5. Under these conditions also the first term in eq VI can be neglected compared with the second.

Figure 7. Plot of $\ln I_P$ versus 1/T. Conditions: 9.5 mM MoO₄²⁻; 0.1 mM EDTA; $[H_2O_2]_0 = 0.093$ M; pH = 10.5; 0.2 M phosphate buffer.

Accordingly, I_P is given by

$$I_{\rm P} = ck_{\rm P}\tau_{\Delta}[{\rm MoO_4}^{2-}]_0k_5/(1+[{\rm H^+}]/K_6) \qquad ({\rm XIII})$$

The temperature dependence of I_P should be mainly caused by the temperature dependence of k_5 . The constants c, k_P , and τ_{Δ} can be regarded as temperature independent,²² and the temperature dependence of $[MOQ_4^{2-}]_0$ and of $[H^+]/K_6 \ll 1$, respectively, should be neglected compared with the temperature dependence of k_5 .

Figure 7 shows the corresponding Arrhenius plot. The calculated kinetic data are $E_a = 15.6 \pm 1.2 \text{ kcal·mol}^{-1}$ and log $A = 9.1 \pm 0.9$, whereby log A was evaluated from the Arrhenius equation employing the value of E_a and the rate constant $k_5 = 4.6 \times 10^{-3} \text{ s}^{-1}$ at T = 25 °C. The activation energy agrees within experimental error with the value $E_a = 17.6 \pm 1.0 \text{ kcal·mol}^{-1}$ reported for the decomposition of $\text{MoO}_6^{2-.21b}$

However, it is important to emphasize that the activation parameters depend on H_2O_2 concentrations. With increasing H_2O_2 concentration E_a increases. For solutions 10 mM in MOO_4^{2-} at pH = 10.5 with $[H_2O_2]_0 = 0.16$ M and $[H_2O_2]_0 = 0.47$ M, respectively, we obtained excellent Arrhenius plots. The calculated values of E_a are 17.3 \pm 1.3 and 19.2 \pm 1.0 kcal·mol⁻¹, respectively. A reasonable explanation for this increase of E_a is that at H_2O_2 concentrations above 0.10 M the temperature dependence of I_P is caused not only by the temperature dependence of the rate constant k_5 but also by that of the equilibrium constant K_8 (see eq VI).

Concluding Remarks

The formation of ${}^{1}O_{2}$ in a thermal reaction can be unequivocally proved by the infrared luminescence (IRL) of ${}^{1}O_{2}$ at 1270 nm.

The system H_2O_2/MOO_4^{2-} is a very efficient 1O_2 source and is most suitable for calibration of a home-built IRL spectrometer.

At the present time the IRL method is limited in water to thermal reactions which produce ${}^{1}O_{2}$ with a rate $v_{1O_{2}} = 2 \times 10^{-7}$ M·s⁻¹ (H₂O) or $v_{1O_{2}} = 1.5 \times 10^{-8}$ M·s⁻¹ (D₂O). Thus it seems unlikely that biochemical reactions generating ${}^{1}O_{2}$ can be measured by the IRL method under in vivo conditions.

Acknowledgment. Financial support from the Max-Buchner-Forschungsstiftung and the Fonds der Chemischen Industrie is gratefully acknowledged.

^{(22) (}a) Ogilby, P. R.; Foote, C. S. J. Am. Chem. Soc. 1983, 105, 3423. (b) Hurst, J. R.; Schuster, G. B. J. Am. Chem. Soc. 1983, 105, 5756. (c) Schmidt, R.; Seikel, K.; Brauer, H.-D. Ber. Bunsen-Ges. Phys. Chem. 1990, 94, 1100. (d) Gorman, A. A.; Hambiett, I.; Lambert, C.; Spencer, B.; Standen, M. C. J. Am. Chem. Soc. 1988, 110, 8053.