Generation of Singlet Oxygen from Hydrogen Peroxide Disproportionation Catalyzed by Molybdate Ions

K. Bahme and H.-D. Brauer'

Institut fiir Physikalische und Theoretische Chemie, Niederurseler Hang, **D-6000** Frankfurt/Main, **FRG**

Received September *19, 1991*

Measurements of the infrared phosphorescence of singlet molecular oxygen *('02)* at **1270** nm have been used to demonstrate that **I02** is formed during the disproportionation of hydrogen peroxide catalyzed by molybdate ions. The results of measurements at hydrogen peroxide concentrations in the range $0.10 \leq [H_2O_2] \leq 0.30$ are consistent The results of measurements at hydrogen peroxide concentrations in the range $0.10 \leq [H_2O_2] \leq 0.30$ are consistent
with the assumption that MoO_6^{2-} and MoO_8^{2-} are formed. However, the decomposition of MoO_8^{2-} 1.2 kcal-mol⁻¹ and $\log A = 9.1 \pm 0.9$ have been evaluated.

Introduction

singlet molecular oxygen in its ¹ Δ_g state (¹O₂)
 $2H_2O_2 \rightarrow 2H_2O + {}^1O_2$ (1) The disproportionation of hydrogen peroxide into water and

$$
2H_2O_2 \rightarrow 2H_2O + {}^{1}O_2
$$
 (1)

should occur spontaneously at room temperature, since this reaction is allowed on both thermodynamic and spin-conservation grounds.^{1,2} However, it is well-known that reaction 1 is kinetically inhibited; its rate is extremely low at room temperature.2

Recently, Aubry reported that several inorganic compounds can catalyze reaction 1 in basic aqueous solutions.3 In particular, the molybdate ion was found to be an efficient catalyst.⁴⁻⁶ The evidence for the generation of ¹O₂ via the catalyzed reaction 1 was obtained indirectly using various water-soluble **I02** acceptors as **102** traps, e.g. tetrapotassium **rubrene-2,3,8,9-tetracarboxy**late (RTC),³ which reacts with ¹O₂ providing the corresponding endoperoxide (RTCO₂).

Chemical traps for ${}^{1}O_{2}$ (e.g. RTC) are unfortunately not unambigous in their effect. This was stringently demonstrated by Mulazzani et al. for the ${}^{1}O_{2}$ trap 9, 10-anthracenedipropionate.⁷ Chemical traps for **102** suffer from several disadvantages which are discussed in detail in the paper of Aubry.³ In addition it must be noted that endoperoxides of aromatic hydrocarbons have the important drawback that they are thermally labile. Thus the activation parameters of a thermal reaction producing ${}^{1}O_{2}$ cannot accurately be determined with aromatic hydrocarbons as ${}^{1}O_{2}$ traps.

In contrast, the infrared luminescence (IRL) at $1.27 \mu m$ resulting from the weak radiative transition of ${}^{1}O_{2}$ can be used as specific and unequivocal proof for ${}^{1}O_{2}$

$$
O_2(^1\Delta_g) \xrightarrow{k_p} O_2(^3\Sigma_g^-) + h\nu
$$
 (2)

The present work is concerned with studies of the disproportionation of H_2O_2 catalyzed by molybdate ions using the IRL method.

Experimental Section

Materials. H20 was distilled twice. Stabilizer-free hydrogen peroxide **(30%,** Merck, Perhydrol Suprapur), sodium molybdate (Na2Mo04.2H20, Puriss pa, Fluka), disodium hydrogen phosphate (Na₂HPO₄, Suprapur,

(4) Aubry, J. M.; Cazin, B. *Inorg. Chem.* **1988,** *27,* 2013. *(5)* Aubry, J. M.; Cazin, B.; Duprat, I. J. *Org. Chem.* **1989,** *54,* 726.

Merck), trisodium phosphate (Na₃PO₄.12H₂O, pa, Merck), potassium iodide (pa Merck), 0.1 M sodium thiosulfate solution (Fixanal, Riedelde Haen), and **ethylenediaminetetraacetic** acid (EDTA, pa Merck) were used as purchased.

Singlet Oxygen Infrared Emission Measurements. The near-infrared detection system mostly used in our studies consisted of a chopper, 1.27- μ m interference filter, liquid nitrogen cooled germanium diode and muon filter (North Coast, EO 817L and 829B), lock-in amplifier, and recorder. Reactions were carried out in a 1-cm quartz cuvette placed directly in front of the chopper. The cuvette holder is connected with a thermostat. Our home-built IRL spectrometer, which can be modified to record also the phosphorescence spectrum of ${}^{1}O_{2}$, has been described in detail.^{8,9}

The intensity of the **IO2** phosphorescence emission, *Ip,* under steadystate conditions is given by the expression

$$
I_{\mathbf{P}} = c k_{\mathbf{p}}[^1\mathbf{O}_2]_s \tag{I}
$$

In this expression c is a constant of the IRL spectrometer and k_p is the rate constant of the phosphorescence emission. In water, a value of $k_p = 0.18$ s⁻¹ was determined by Schmidt and Afshari.¹⁰ In addition $[{}^{1}O_{2}]_{s}$ denotes the stationary concentration of ${}^{1}O_{2}$.

If only the phosphorescence emission (reaction 2) and the quenching by the solvent (reaction 3) are responsible for the deactivation of ${}^{1}O_{2}$,

$$
{}^{1}O_{2} \stackrel{k_{\Delta}}{\rightarrow} {}^{3}O_{2}
$$
 (3)

with $k_{\Delta} \gg k_{\text{P}}$, then $[\text{^{1}O}_{2}]_s$ is given by the following expression:

$$
[{}^{1}O_{2}]_{s} = v_{1O_{1}}\tau_{\Delta} \tag{II}
$$

where v_{10_2} denotes the rate of ¹O₂ formation and $\tau_{\Delta} = 1/k_{\Delta}$ represents the lifetime of ${}^{1}O_{2}$. From measurements of the phosphorescence emission of ${}^{1}O_{2}$ generated by electronically excited sensitizers (e.g. methylene blue), we have calculated that the lowest value of $[{}^{1}O_{2}]_{s}$, which can be measured with our very sensitive IRL spectrometer, amounts to about 10⁻¹² M. Thus in water with the ¹O₂ lifetime of $\tau_{\Delta} = 4.2 \,\mu s^{11}$ with our IRL spectrometer only thermal reactions can be measured, which generate ${}^{1}O_{2}$ with a rate of $v_{1O_{2}} \geq [{}^{1}O_{2}]_{s}/\tau_{\Delta} \geq 2.4 \times 10^{-7}$ M·s⁻¹. However, if D₂O is used as a solvent instead of H_2O , then reactions with a lower v_{1O_2} value $(v_{10} \geq 1.5 \times 10^{-8} \text{ M} \cdot \text{s}^{-1})$ can still be measured as a consequence of the longer ¹O₂ lifetime in D₂O with $\tau_{\Delta} = 68 \ \mu s$.¹¹

For reaction 1 catalyzed by molybdate ions in basic aqueous solution at pH = 10.5 Aubry and Cazin⁴ have determined values of $v_{10} \ge 5 \times 10^{-10}$ 10^{-7} M·s⁻¹. Thus this reaction should be measurable without difficulties with our IRL spectrometer.

⁽¹⁾ Koppenol, W. H. *Nature (London*) 1976, 262, 420.
(2) Evans, P. F.; Upton, M. W. J. Chem. Soc., Dalton Trans. 1985, 2525.
(3) Aubry, J. M. *J. Am. Chem. Soc.* 1985, 107, 5844.

⁽⁶⁾ Aubry, J. **M.** *New chemical sources of singlet oxygen in 'Membrane*

Lipid Peroxidation"; CRC Press: Boca Raton, FL, 1991; Vol. 2, p 65. (7) Mulazzani, *Q.* G.; Ciano, M.; D'Angelantonio, M.; Venturi, **M.;** Rodgers, M. A. J. J. *Am. Chem. SOC.* **1988,** *110,* 2451.

⁽⁸⁾ Schmidt, R.; Brauer, H.-D. J. Am. *Chem. Soc.* **1987,** *109,* 6976.

⁽⁹⁾ Schmidt, R. *Chem. Phys. Left.* **1988,** *151,* 369.

⁽¹⁰⁾ Schmidt, R.; Afshari, E. *J. Phys. Chem.* **1990,** *94,* 4377.

⁽¹¹⁾ Schmidt, R. J. *Am. Chem. SOC.* **1989,** *111,* 6983.

O2 Generation from H202 Disproportionation

Introduction of *eq* **I1** into *eq* I results in

$$
I_{\rm P} = c k_{\rm P} \tau_{\Delta} v_{\rm 1O},\tag{III}
$$

Equation **111** will be frequently stressed in the following.

Reaction Scheme and Rate Law. It is well established that the reaction between $MoO₄²⁻ ions and H₂O₂ in neutral and alkaline media leads to$ two derivatives.¹² At low H_2O_2 concentration a yellow diperoxo species, $MoO₆²⁻, is formed, ¹²⁻¹⁷ whereas for a large excess of H₂O₂ a red-brown$ tetraperoxo molybdate, $MoO₈²⁻$, is generated.^{12,18,19}

In principle ${}^{1}O_{2}$ can be produced by the decomposition of both MoO_{6}^{2-} and Mag2-. The mechanism of **I02** formation may therefore represented by the following steps:

$$
2H_2O_2 + MoO_4^{2-} \rightleftharpoons 2H_2O + MoO_6^{2-}
$$
 (4)

$$
MoO62- \to MoO42- + 1O2
$$
 (5)

$$
HMoO6- \rightleftharpoons H+ + MoO62-
$$
 (6)

$$
H_2O_2 \rightleftarrows H^+ + HO_2^- \tag{7}
$$

$$
2H_2O_2 + MoO_6^{2-} \rightleftarrows 2H_2O + MoO_8^{2-}
$$
 (8)

$$
MoO82- \rightarrow MoO62- + 1O2
$$
 (9)

$$
HMoO8- \rightleftarrows H+ + MoO82-
$$
 (10)

Under the assumption that the decompositions of $MoO₆²⁻$ (reaction 5) and of $MoO₈²⁻$ (reaction 9) are slow compared with the attainment of the equilibria 4, $6-8$, and 10, the rate law for ${}^{1}O_{2}$ formation is

$$
v_{1Q_2} = \{(k_5 + \{k_9 K_8 [\text{H}_2\text{O}_2]_0^2\}/A) [\text{MoO}_4^{2-}]_0 [\text{H}_2\text{O}_2]_0^2\}/\
$$

$$
\{(K_4)^{-1}A + (1 + [\text{H}^+]/K_6) [\text{H}_2\text{O}_2]_0^2 +
$$

$$
(\{1 + [\text{H}^+]/K_{10}\} K_8 [\text{H}_2\text{O}_2]_0^4)/A\} (\text{IV})
$$

Here $A = (1 + K_7/[\text{H}^+])^2$, $[\text{MoO}_4^2]_0$ denotes the starting concentration, $[H_2O_2]_0$ is the total concentration of free hydrogen peroxide, k_5 and k_9 represent the rate constants of reactions 5 and 9, respectively, and K_i are the constants of the equilibria $4, 6-8$, and 10 , whereby the constants K_4 and K_8 contain the constant water concentration.

Aubry and Cazin⁴ have measured v_{10} values of the MoO₄²⁻-catalyzed and K_8 contain the constant water concentration.
Aubry and Cazin⁴ have measured v_{1Q_2} values of the MoO₄²⁻-catalyzed
disproportionation of H₂O₂ with dependence upon pH (8 \leq pH \leq 13) and
upon H.O. upon H_2O_2 concentration (0.005 $M \leq [H_2O_2] \leq 0.11$ M) using solutions containing $1 \text{ mM } \text{MoO}_4^2$. Although measurements were performed with a ratio $[H_2O_2]/[MoO_4^{2-}] = 110$ at pH = 10.5, where a part of $MoO₆²⁻ should be converted into MoO₈²⁻,¹⁹ the authors found that their$ results can be described by *eq* V, indicating that, under the experimental

$$
v_{1O_2} = \frac{1}{2} v_{H_2O_2} = \frac{k_5 [M_0O_4^{2-}]_0 [H_2O_2]_0^{2}}{(K_4)^{-1}A + (1 + [H^+]/K_0)[H_2O_2]_0^{2}}
$$
 (V)

conditions used, $MoO₈²⁻$ species do not influence $v_{10₂}$ or the rate of disappearance of H₂O₂, $v_{\text{H}_2\text{O}_2}$, i.e. $k_5 \gg {\frac{k_9 K_8 [H_2O_2]_0^2}{A}}$ and $((K_4)^{-1}A)$ + $(1 + [H^+] / K_6)[H_2O_2]_0^2$) \gg $(1 + [H^+] / K_{10}K_8[H_2O_2]_0^4)/A$. The values of the rate constant and equilibrium constants in eq V are k_5 = 4.6×10^{-3} s⁻¹, $K_4 = 2.5 \times 10^3$ M⁻², $K_6 = 7.9 \times 10^{-10}$ M, and $K_7 = 2.5$ **X 1O-I2** M.4

-
- Jahr, K. **F.** *Ber. Ges. Freunde T.H. Berlin* **1939,** 91.
- Csanyi, L. J. *Acta Chim. Acad. Sci. Hung.* **1958,** *14,* 69,19, 269.
- Richardson, E. *Less-Common. Met.* **1960,** *2,* 360.
- Stomberg, R. *Acra Chem. Scad* **1968,** *22,* 1076.
- Stomberg, R. *Acta Chem. Scand.* **1969,** *23,* 2755. 11 R Y
- Csanyi, L. J.; Horvath, I.; Galbacs, **Z.** M. *Transition Met. Chem.* **1989,** (19) *14,* 90.

Figure 1. Phosphorescence spectrum of ${}^{1}O_{2}$ $({}^{1}\Delta_{g}, v = 0 \rightarrow {}^{3}\Sigma_{g}, v = 0)$. Conditions: 50 mM $MoO₄²$; 0.9 M $H₂O₂$ at $t = 0$ s; 0.5 mM EDTA; $pH = 10.5$; 0.2 M phosphate buffer (Na₂HPO₄/Na₃PO₄); $T = 25$ °C; half-bandwidth of emission monochromator, $\lambda_{1/2} = 34$ nm.

Figure 2. I_P as a function of H_2O_2 concentration. Conditions: 1 mM $MoO₄²$; 0.1 mM EDTA, pH = 10.5; 0.2 M phosphate buffer $T = 25$ °C. Curve a represents the theoretical curve of **UIO,** calculated from *eq* V using the rate and equilibrium constants given in the text. Curve b represents the theoretical curve of v_{10} , calculated from eq VI using K_8 $= 2.0$ M⁻². The rhombs represent experimental values of I_P (au).

The value of v_{10_2} strongly depends on pH and exhibits a maximum value at $pH = 10.5$. Thus in general, with the IRL technique, measurements were performed in solutions at about $pH = 10.5$.

Results and Discussion

To suppress the decomposition of **H202** by impurities, EDTA was added to the solutions. Preliminary tests of the $MoO₄²$ -catalyzed disproportionation of $H₂O₂$ with the IRL technique have unequivocally shown that ${}^{1}O_{2}$ is produced in this reaction, as demonstrated by measurements of its infrared phosphorescence spectrum (Figure 1). In order to check the results reported by Aubry and Cazin,⁴ the following measurements were conducted.

'02 **Phosphorescence Emission as a Function** of [HzO~]. According to eq III I_P is directly proportional to the rate of ${}^{1}O_2$ formation, v_0 . From eq V it can be deduced that at $[H_2O_2]_0$ $\leq 10^{-3}$ M $((K_4)^{-1} \gg [H_2O_2]_0^2$ *U_Q*, should increase with $[H_2O_2]_0^2$ and at $[H_2O_2]_0 \ge 10^{-1} M ([H_2O_2]_0^2 \gg (K_4)^{-1}) v_{1O_2}$ should be zero order with respect to H_2O_2 . However our results are not in accordance with these expectations. In Figure 2 the dependence of I_P on $[H_2O_2]_0$ up to 0.21 M of solutions 1 mM in MoO_4^{2-} at pH = 10.5 is depicted. As can be seen, the experimental I_P values obtained for $[H_2O_2]_0 \le 0.10$ M fit very well the curve of v_{1O_2} columbia pH = 10.5 is depicted. As can be seen, the experimental I_P values obtained for $[H_2O_2]_0 \le 0.10$ M fit very well the curve of v_{1O} , calculated from eq V employing the values of $k₅$ and the various equilibrium constants mentioned above (curve a).

However, the values of I_P obtained for solutions with $[H_2O_2]_0$ ≥ 0.14 M deviate distinctly from curve a which suggests that

⁽¹²⁾ Connor, J. A.; Ebsworth, E. A. V. In Peroxy Compounds of Transition Metals. *Advances in Inorganic Chemistry and Radiochemistry*, Emeleus, H. J., Sharpe, A. G., Eds.; Academic Press: **New** York and London, 1964; **Vol.** 6, p 279. Griffith, **W.** P. J. *Chem. SOC.* **1963,** 5345.

Figure 3. **Ip** as a function of time. Conditions: **9.3** mM M0042-; **0.32** M H202 at *t* = 0 **s;** 0.1 **mM** EDTA; pH = **10.5; 0.2** M phosphate buffer; $T = 25 °C$.

besides $MoO₆²⁻ also MoO₈²⁻ is formed. A reasonable explanation$ for the decrease of I_P observed for H_2O_2 concentrations above 0.14 M is that the decomposition of $MoO₈²⁻$ (reaction 9) does not lead to significant ¹O₂ formation. With the value $K_{10} = 1 \times 10^{-8}$ M reported by Dedman et al.,²⁰ the inequality $[H^+] / K_{10} \ll 1$ lead to significant ¹O₂ formation. With the value $K_{10} = 1 \times 10^{-8}$
M reported by Dedman et al.,²⁰ the inequality $[H^+] / K_{10} \ll 1$
holds in the range 10.2 \leq pH \leq 10.7. Also with the presumption
that the ineq that the inequality $k_5 \gg \frac{k_9 K_8[H_2O_2]_0^2}{A}$ holds, curve b in Figure 2 was calculated from eq VI with $K_8 = 2.0$ M⁻².

$$
v_{1O_2} = \frac{k_5 [\text{MoO}_4{}^2]_0 [\text{H}_2\text{O}_2]_0{}^2}{(K_4)^{-1}A + (1 + [\text{H}^+]/K_0)[\text{H}_2\text{O}_2]_0{}^2 + K_8 [\text{H}_2\text{O}_2]_0{}^4/A}
$$
(VI)

Curve b fits the experimental values of **Zp** better than curve a. Our results are consistent with the assumption that MO_8^2 - species
are formed at pH = 10.5 in solutions 1 mM in MO_4^2 - in the
range $0.10 \leq [H_2O_2] \leq 0.21$ M but that under these conditions
the decomposition of MO_4 are formed at $pH = 10.5$ in solutions 1 mM in $MoO₄²⁻$ in the the decomposition of $MoO₈²⁻$ (reaction 9) can be neglected compared with the decomposition of $MoO₆²⁻$ (reaction 5). The decrease of v_{10} , and therefore of I_P is caused by the attainment of equilibrium 8, i.e. by the contribution of the third term in the denominator of *eq* VI.

From curve b can be deduced that v_{10_2} and accordingly I_P should markedly increase with increasing time for solutions with $[H_2O_2]_0 \ge 0.20$ M. Figure 3 shows for example the variation of I_P of solutions 9.3 mM in MoO₄²⁻ at pH = 10.5 with a starting concentration of $[H_2O_2]_0 = 0.32$ M. Actually, I_P increases monotonically from about 7.95 mV at reaction zero time to a value of about $I_P = 8.75$ mV after 1500 s and then I_P remains nearly constant over a period of about 600 **s** in accordance with *eq* VI.

 ${}^{1}O_{2}$ **Phosphorescence Emission as a Function of** $[MoO_{4}^{2}]$ **.** Measurements of $v_{H_2O_2}$ show that $v_{H_2O_2}$ is first order with respect to $MoO₄²⁻$ in the range 0.2–2.0 mM.²¹ The reaction order of $v₁₀$ with respect to $MoO₄²-$ can be determined by measuring I_P as a function of $[MoO_4^{2-}]_0$. Measurements were performed at pH = 10.5 and $[H_2O_2]_0$ = 0.165 M in the range 0.97-10.0 mM MoO₄²⁻. Under these conditions expression VI1 deduced from **eqs** I11 and VI should hold true.

$$
I_{\rm P} = c k_{\rm P} \tau_{\Delta} k_5 0.906 \left[\text{MoO}_4^2 \right]_0 \tag{VII}
$$

Figure 4. Double logarithmic plot of I_P versus $[M_0O_4^2]$. Conditions: 0.1 mM EDTA; $[H_2O_2]_0 = 0.165 M$; pH = 10.5; 0.2 M phosphate buffer; $T = 25 °C$.

In order to determine experimentally the exponent of $[M_0O_4^2]_0$ a double logarithmic plot of I_P vs $[MoO_4^{2-}]_0$ was conducted (Figure 4).

The slope of the straight line in Figure 4 is 0.97 ± 0.04 , indicating that v_{10} is actually first order with respect to MoO₄²⁻
in the concentration range 0.97-10.0 mM. Similar results are
obtained at 10.2 \leq pH \leq 10.7 and 0.10 M \leq [H₂O₂]₀ \leq 0.32 M.
The in the concentration range 0.97-10.0 mM. Similar results are

The data given in Figure 4 can be used for the calculation of the constant *c* of our IRL spectrometer.

According to eq VII a plot of I_P vs $[M_0O_4^2]$ yields a straight line. From the slope **SL** of the straight line

$$
SL = ckP \tau_{\Delta} k_5 0.906 = 0.91
$$

c can be calculated using the values for k_{P} , τ_{Δ} , and k_5 mentioned above. Taking into account all data of the measurements of **Zp** vs $[MoO₄²⁻]₀$ (vide supra) the mean value is $c = (3.0 \pm 0.2) \times$ 10^8 V \cdot M⁻¹ \cdot s.

The knowledge of *c* enables **us** to determine directly the rate of ${}^{1}O_{2}$ formation (eq III) or the stationary concentration $[{}^{1}O_{2}]_{s}$ (eq I) for a given thermal ${}^{1}O_{2}$ source, if I_{P} is measured in volts. For aqueous solutions v_{10} can be calculated by expression VIII.

$$
v_{1O_2} = (4.4 \pm 0.3) \times 10^{-3} I_P \, (\text{M} \cdot \text{s}^{-1}) \tag{VIII}
$$

With $c = 3.0 \times 10^8$ V \cdot M⁻¹ \cdot s the values of I_P at reaction time zero ($I_P \approx 7.95$ mV) and at $t = 1500$ s ($I_P \approx 8.75$ mV) given in Figure 3 can be evaluated using, for $t = 0$ s, $[H_2O_2]_0 = 0.32$ M and, for $t = 1500$ s, $[H_2O_2]_t = 0.13$, at which the maximum value of I_P is expected according to eq VI. At $t = 0$ s eq IX holds

$$
I_{\rm P} = 0.82c k_{\rm P} \tau_{\Delta} k_5 9.3 \times 10^{-3} = 7.93 \text{ mV} \qquad (IX)
$$

and at $t = 1500$ s I_P is given by

$$
I_{\rm p} = 0.91 c k_{\rm p} \tau_{\Delta} k_5 9.3 \times 10^{-3} = 8.80 \text{ mV} \tag{X}
$$

The good agreement between experimental and calculated values of I_P confirms the assumption that at H_2O_2 concentrations lower than 0.32 M the decomposition of $MoO₈²⁻$ (reaction 9) does not significantly contribute to ${}^{1}O_{2}$ formation.

Yield of ¹O₂ formation (\mathbf{y}_{0_2}) **.** In accordance with reaction 1 Aubry and Cazin4 have obtained for **yio,** a value of 0.5, indicating the formation of one ${}^{1}O_{2}$ molecule per two molecules of $H_{2}O_{2}$. *ylo,* is given by

$$
y_{10_2} = \frac{n_{\Delta,t}/V}{\left[H_2O_2\right]_0 - \left[H_2O_2\right]_t}
$$
 (XI)

Here $n_{\Delta,t}$ denotes the total number of moles of ¹O₂ formed at time *t*, *V* is the sample volume, and $[H_2O_2]_0 - [H_2O_2]_t$ represents the concentration loss of H_2O_2 at time t.

⁽²⁰⁾ Dedman, A. J.; Lewis, T. J.; Richards, **D.** H. *J. Chem. Soc.* **1963,2456. (21) (a) Spitalsky, E.; Funck, A.** *2. Phys. Chem., Stoechiom. Verwandtschafrsl.* **1927,** *126,* **1. (b)** Baxendale, **J. H.** *Adv. Corol.* **1952.4, 31.** (c) **Sahin, M.;** Berkem, **A.** R. *Chim. Acra Turc.* **1977,** *5,* **31 1.**

time $[s]$
Figure 5. I_P , concentration $n_{\Delta,t}/V$, and H_2O_2 concentration loss versus **Figure 5. Ip,** concentration **nA,l/V,** and H202 concentration loss versus time. Conditions: 5.1 mM Mood2-; 0.1 mM EDTA; **0.165** M H202 at calculated from eq XII using the values for c , k_{P} , and τ_{Δ} given in the text. The rhombs represent the values of H_2O_2 consumption determined by iodometric titration of H_2O_2 .

Figure 6. Plot of $n_{\Delta,t}/V$ versus $[H_2O_2]_0 - [H_2O_2]_t$. Conditions: see Figure *5.*

In order to measure $n_{\Delta,t}/V$ the integrated intensity $(I_P)_t$ ⁱⁿ from the reaction from zero time until time *t* was measured. From the integrated form of eq III for $n_{\Delta,t}/V$ eq XII follows.

$$
n_{\Delta,t}/V = \frac{1}{ck_{\rm P}\tau_{\Delta}} (I_{\rm P})_t^{\rm in}
$$
 (XII)

Figure **5** summarizes the results of measurements of a solution 5.1 mM in MoO₄²⁻ and an initial concentration of $[H_2O_2]_0$ = **0.165** M at pH = 10.5. Figure **5** shows the experimental curve of I_P as a function of time, the values of $n_{\Delta,t}/V$ calculated from eq XII employing the values of *c*, k_p , and τ_A mentioned above and finally the values of $[H_2O_2]_0 - [H_2O_2]_t$ determined by iodometric titration at six different times.

As reported by Aubry and Cazin,⁴ the rate of ${}^{1}O_{2}$ formation should be half the rate of H_2O_2 disappearance $(v_{O_2} = 1/zv_{H_2O_2})$. If this is true the plot of $n_{\Delta,t}/V$ vs $[\bar{H}_2O_2]_0 - [H_2O_2]_t$ according to eq XI should yield a straight line with a slope of $SL = y₁₀ =$ 0.50.

 $n_{\Delta,t}/V$ is plotted versus $[H_2O_2]_0 - [H_2O_2]_t$ in Figure 6. The slope of the straight line is $SL = y_{10} = 0.51 \pm 0.03$, confirming the result of Aubry and Cazin.

'02 **Pbospborescence Emission at Different Temperatures.** In order to eliminate the influence of the third term on v_{1Q_2} (eq VI) and accordingly on I_P , we have used for measurements of I_P as a function of temperature solutions **9.5** mM in Mo042- and 0.093 M in H_2O_2 at pH = 10.5. Under these conditions also the first term in *eq* VI can be neglected compared with the second.

Figure 7. Plot of $\ln I_p$ versus $1/T$. Conditions: $9.5 \text{ mM } \text{MoO}_4^2$; 0.1 mM EDTA; $[H_2O_2]_0 = 0.093$ M; $pH = 10.5$; 0.2 M phosphate buffer.

Accordingly, **Zp** is given by

$$
I_{\rm P} = c k_{\rm P} \tau_{\Delta} [{\rm MoO_4}^{2-}]_0 k_5 / (1 + [H^+] / K_6)
$$
 (XIII)

The temperature dependence of **Zp** should be mainly caused by the temperature dependence of k_5 . The constants c , $k_{\rm P}$, and τ_{Δ} can be regarded as temperature independent,²² and the temperature dependence of $[MoO_4^{2-}]_0$ and of $[H^+] / K_6 \ll 1$, respectively, should be neglected compared with the temperature dependence of k_5 .

Figure **7** shows the corresponding Arrhenius plot. The calculated kinetic data are $E_a = 15.6 \pm 1.2$ kcal-mol⁻¹ and log $A = 9.1 \pm 0.9$, whereby log A was evaluated from the Arrhenius equation employing the value of E_a and the rate constant k_5 = 4.6×10^{-3} s⁻¹ at $T = 25$ °C. The activation energy agrees within experimental error with the value $E_a = 17.6 \pm 1.0$ kcal-mol⁻¹ reported for the decomposition of $MoO₆^{2-,21b}$

However, it is important to emphasize that the activation parameters depend on H₂O₂ concentrations. With increasing H_2O_2 concentration E_a increases. For solutions 10 mM in MoO₄²⁻ at pH = 10.5 with $[H_2O_2]_0 = 0.16$ M and $[H_2O_2]_0 = 0.47$ M, respectively, we obtained excellent Arrhenius plots. The calculated values of E_a are 17.3 \pm 1.3 and 19.2 \pm 1.0 kcal-mol⁻¹, respectively. A reasonable explanation for this increase of E_a is that at H_2O_2 concentrations above 0.10 M the temperature dependence of **Zp** is caused not only by the temperature dependence of the rate constant k_5 but also by that of the equilibrium constant K_8 (see eq VI).

Concluding Remarks

The formation of ${}^{1}O_{2}$ in a thermal reaction can be unequivocally proved by the infrared luminescence (IRL) of I02 at **1270** nm.

The system $H_2O_2/M_0O_4^{2-}$ is a very efficient ${}^{1}O_2$ source and is most suitable for calibration of a home-built IRL spectrometer.

At the present time the IRL method is limited in water to thermal reactions which produce ${}^{1}O_{2}$ with a rate $v_{1O_{2}} = 2 \times 10^{-7}$ $M \cdot s^{-1}$ (H₂O) or $v_{10_2} = 1.5 \times 10^{-8}$ M $\cdot s^{-1}$ (D₂O). Thus it seems unlikely that biochemical reactions generating ${}^{1}O_{2}$ can be measured by the IRL method under in vivo conditions.

Acknowledgment. Financial support from the Max-Buchner-Forschungsstiftung and the Fonds der Chemischen Industrie is gratefully acknowledged.

^{(22) (}a) Ogilby, P. R.; Foote, C. S. *J. Am. Chem. Soc.* 1983, 105, 3423. (b) Hurst, J. R.; Schuster, G. B. *J. Am. Chem. Soc.* 1983, 105, 5756. (c) Schmidt, R.; Seikel, K.; Brauer, H.-D. Ber. Bunsen-Ges. Phys. Chem. **1990,94,1100.** (d) G0rman.A. A.; Hamblett, I.;Lambert, C.;Spencer, B.; Standen, M. C. *J. Am. Chem. SOC.* **1988, 110, 8053.**